Hot Carrier Extraction with Plasmonic Broadband Absorbers.
نویسندگان
چکیده
Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles.
منابع مشابه
Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
Light absorption is a fundamental optical process playing significantly important role in wide variety of applications ranging from photovoltaics to photothermal therapy. Semiconductors have well-defined absorption bands with low-energy edge dictated by the band gap energy, therefore it is rather challenging to tune the absorption bandwidth of semiconductors. However, resonant absorbers based o...
متن کاملOmnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings
Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of compl...
متن کاملBroadband absorbers and selective emitters based on plasmonic Brewster metasurfaces
We discuss the possibility of realizing utlrabroadband omnidirectional absorbers and angularly selective coherent thermal emitters based on properly patterned plasmonic metastructures. Instead of relying on resonant concentration effects that inherently limit the bandwidth, we base our design on the combination of two inherently nonresonant effects: plasmonic Brewster funneling and adiabatic pl...
متن کاملGap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation
Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demons...
متن کاملAll-Silicon Ultra-Broadband Infrared Light Absorbers
Absorbing infrared radiation efficiently is important for critical applications such as thermal imaging and infrared spectroscopy. Common infrared absorbing materials are not standard in Si VLSI technology. We demonstrate ultra-broadband mid-infrared absorbers based purely on silicon. Broadband absorption is achieved by the combined effects of free carrier absorption, and vibrational and plasmo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2016